

Indagine sulla radioattività ambientale nelle aree circostanti la centrale nucleare del Garigliano

Indagine sulla radioattività ambientale nelle aree circostanti la centrale nucleare del Garigliano

Informazioni legali

Løstituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), le Agenzie Regionali per la Protezione dell'Ambiente (ARPA Campania e ARPA Lazio) e le persone che agiscono per loro conto non sono responsabili per løuso che può essere fatto delle informazioni contenute in questo rapporto.

ISPRA - Istituto Superiore per la Protezione e la Ricerca Ambientale Via Vitaliano Brancati, 48 ó 00144 Roma www.isprambiente.gov.it

ISPRA, Rapporti 197/2014 ISBN 978-88-448-0653-8

Riproduzione autorizzata citando la fonte

Elaborazione grafica ISPRA

Grafica di copertina: Alessia Marinelli Foto di copertina: ISPRA RIS-CON

Coordinamento editoriale:

Daria Mazzella

ISPRA ó Settore Editoria

Aprile 2014

Autori

- L. Matteocci, R. Ocone, (ISPRA ó Servizio Controlli Attività Nucleari)
- G. Torri, G. Bidolli, G. Jia, G. Menna M. Blasi, M. Cavaioli, A. Di Lullo, S. Fontani, P. Leone, Sara Mariani, Luca Ciciani (ISPRA ó Servizio Misure Radiometriche)
- P. Bitonti, C. Salierno, (ISPRA ó Servizio Radioprotezione)
- G.Guerrasio, P.Mainolfi, (ARPA Campania)
- P. Di Legge, G. Evangelisti, T.Fabozzi, S. Paci, R. Sozzi (ARPA Lazio)

Coordinamento: L. Matteocci (ISPRA); Redazione Rapporto Tecnico: R. Ocone, G. Menna (ISPRA); Verifica dati: R. Ocone (ISPRA); Campionamenti: F. Lavorante (ISPRA); G. Guerrasio, P. Mainolfi (ARPA Campania); P. Di Legge, A. Cappelli, L. Rinaldi (ARPA Lazio); Misure: G. Guerrasio, P. Mainolfi (ARPA Campania); P. Di Legge, G. Evangelisti, (ARPA Lazio)

INDICE

Premessa	5
1. Stato delleimpianto	5
2. Obiettivi dellaindagine	6
3. Programma dei campionamenti e delle misure radiometriche	6
4. Campionamenti	11
Sabbia di mare	11
Sedimenti fluviali	
Acqua di fiume	
Acqua di mare	
Acqua di falda (interno centrale)	
Acqua di falda (esterno centrale)	13
Terreno (top soil) ed erba	
Pesce di mare	
Pesce di fiume	
Vegetali e frutta	
Latte di bufala	
Mitili	
Particolato atmosferico	16
5. Risultati delle misure	17
6. Fondo ambientale regionale e riferimenti a livello nazionale	27
7. Valutazioni e conclusioni	29
8. Riferimenti	30
0 Allogato	21

Premessa

La presente relazione riporta le modalità di svolgimento ed i risultati di una campagna di controlli della radioattività ambientale condotta dalla SPRA, in collaborazione con la ARPA Campania e la ARPA Lazio, nelle aree limitrofe alla centrale del Garigliano, nel periodo Giugno 2013-Gennaio 2014.

1. Stato delløimpianto

La centrale elettronucleare del Garigliano, sita in Sessa Aurunca (CE) e dotata di un reattore nucleare ad acqua bollente General Electric del tipo BWR da 506 MWt (150 MWe), entrò in esercizio commerciale nel giugno 1964, con una produzione elettrica complessiva, fino all\u00e9arresto definitivo, di circa 12 miliardi di kilowattora.

La centrale fu fermata nell@agosto 1978 per l@esecuzione di rilevanti interventi di adeguamento, che però, a seguito di valutazioni economiche, fu deciso di non attuare. Con delibera CIPE del 4/3/1982 fu quindi disposta la chiusura definitiva della centrale e furono avviate le operazioni per porre l@mpianto in una condizione di ocustodia protettiva passivao (CPP).

Le attività più significative effettuate da allora, oltre alla manutenzione ordinaria, sono state løallontanamento del combustibile irraggiato, in larga parte trasferito in Inghilterra a fini di riprocessamento ed in quantità limitate oggi stoccato nel deposito õAvogadroö di Saluggia, la caratterizzazione radiologica preliminare, la decontaminazione e copertura della piscina e del canale del combustibile, la decontaminazione e chiusura del vessel, il drenaggio e isolamento del circuito primario e dei circuiti idraulici, il trattamento e condizionamento dei rifiuti di processo, e la trasformazione/costruzione di depositi temporanei per lo stoccaggio dei rifiuti prodotti (ex-Diesel e D1).

Nel 1997 fu presentata laistanza di disattivazione basata sulla strategia di smantellamento differito (o di õcustodia protettiva passivaö), in linea con la licenza di esercizio emessa con decreto del Ministero dellaIndustria del 1985. Con i successivi indirizzi del Ministero dellaIndustria del 1999, confermati con i decreti del 7/5/2001 e del 2/12/2004, la strategia di smantellamento differito è stata abbandonata a favore della disattivazione õin una faseö. Løistanza di autorizzazione delle operazioni di disattivazione ex art.55 del D.Lvo n. 230/1995 è stata presentata nel dicembre 2001 e successivamente integrata con løAddendum del settembre 2003. La relativa istruttoria tecnica delløISPRA (allora APAT) si è conclusa nel 2006 con løemissione del parere tecnico ex art.56 del citato decreto legislativo. Nel dicembre 2009, a conclusione della relativa procedura VIA, è stato emanato il decreto di pronunciamento di compatibilità ambientale. Loautorizzazione alla disattivazione, rimasta in sospeso in attesa di detto pronunciamento di compatibilità ambientale, ha ripreso il suo iter con la richiesta, da parte del Ministero dello Sviluppo Economico, di una verifica del parere della SPRA del 2006. A tale riguardo løSPRA ha richiesto alla SO.G.I.N. løaggiornamento del Piano di Disattivazione con particolare riferimento alla strategia di deposito in sito dei rifiuti radioattivi. La SO.G.I.N. ha pertanto prodotto un nuovo documento di aggiornamento e il 28 settembre 2012, a seguito di Conferenza di Servizi e di un parere dello SPRA aggiornato, è stato emanato dal Ministero dello Sviluppo Economico il decreto di autorizzazione delle operazioni di disattivazione [7].

Tra le attività svolte presso la centrale, finalizzate al miglioramento delle condizioni di sicurezza delle impianto e connesse alla disattivazione, si citano le adeguamento delle dificio ex-Diesel a deposito temporaneo di rifiuti radioattivi con il relativo avvio alle esercizio, il completamento della rimozione amianto nelle dificio reattore e la realizzazione del Deposito temporaneo D1.

Le principali attività in corso, o previste per il prossimo futuro, sono:

- l\(avvio all\(esercizio del citato deposito temporaneo D1 per i rifiuti radioattivi;
- løadeguamento del sistema elettrico e del sistema di approvvigionamento idrico;
- lo smantellamento del camino di centrale con la realizzazione di un nuovo punto di scarico degli effluenti aeriformi;
- la bonifica delle trincee;
- la realizzazione del nuovo sistema per la gestione degli effluenti liquidi.

Con riferimento ai rilasci nell@ambiente di effluenti liquidi ed aeriformi le prescrizioni per la disattivazione che costituiscono parte integrante del succitato decreto di autorizzazione del 28/09/2012, stabiliscono limiti di concentrazione di attività dei radionuclidi, oltre che di attività totale, tali da rispettare, per la dose alla popolazione, il criterio di non rilevanza radiologica fissato nella normativa vigente in un valore di dose efficace di 10 microSv/anno.

2. Obiettivi delløindagine

In vista dell'avvio delle più significative operazioni previste dal programma di disattivazione del sito, l'ASPRA ha deciso di effettuare un monitoraggio indipendente della radioattività ambientale del sito della centrale nucleare con il duplice scopo di:

- disporre di un preventivo õpunto zeroö di riferimento;
- vigilare sulle modalità di effettuazione della sorveglianza della radioattività ambientale che la SO.G.I.N., in qualità di esercente, deve garantire ai sensi dell'art. 54 del D.Lvo n. 230/1995.

3. Programma dei campionamenti e delle misure radiometriche

Il suddetto monitoraggio è stato effettuato programmando una campagna di misure radiometriche condivisa ed attuata con le Agenzie Regionali per la Protezione delløAmbiente di pertinenza territoriale: ARPA Campania ed ARPA Lazio. Le matrici ambientali ed alimentari su cui effettuare le relative misure sono state scelte tenendo anche conto del Programma di sorveglianza ambientale della SO.G.I.N. [8, 9], approvato dallø ISPRA ai sensi del DM del 28 settembre 2012 di autorizzazione delle operazioni di disattivazione.

I campionamenti si sono svolti da giugno 2013 a gennaio 2014 e sono stati effettuati da personale del Dipartimento nucleare, rischio tecnologico ed industriale dellø ISPRA, con la partecipazione di personale delløARPA Campania e delløARPA Lazio che, a seconda della competenza territoriale, ha acquisito una propria aliquota dei campioni da sottoporre a misure. Alle operazioni di campionamento ha partecipato anche personale della SO.G.I.N. acquisendo unøaliquota dei campioni prelevati per le proprie misure. Alcuni campionamenti sono stati effettuati alla presenza di ispettori ISPRA ex. art. 10 del D.L.vo n. 230/1995.

Il programma dell'andagine radiometrica si è articolato come riportato nella seguente tabella:

Matrice	N. punti prelievo	Misure	Istituto/Agenzie
Acqua di superficie	3	Spettrometria gamma, alfa totale, beta totale, ³ H	ISPRA, ARPA Campania
Sabbia di mare	4	Spettrometria gamma	ISPRA, ARPA Campania, ARPA Lazio
Acqua di mare	2	Spettrometria gamma	ISPRA, ARPA Campania, ARPA Lazio
Sedimenti	6	Spettrometria gamma, spettrometria alfa (isotopi Pu), alfa totale	ISPRA, ARPA Campania, ARPA Lazio
Acqua di falda	4	Spettrometria gamma, spettrometria alfa (isotopi Pu), ³ H, alfa totale, beta totale, ⁹⁰ Sr	ISPRA, ARPA Campania
Pesce di fiume	1	Spettrometria gamma	ISPRA
Terreno (Top soil)	2	Spettrometria gamma	ISPRA, ARPA Campania, ARPA Lazio
Erba	2	Spettrometria gamma	ISPRA, ARPA Campania, ARPA Lazio
Vegetali e frutta	1+1	Spettrometria gamma	ISPRA, ARPA Campania
Pesce di mare	1	Spettrometria gamma	ISPRA
Mitili	1	Spettrometria gamma	ARPA Lazio
Aria (partic. atm.)	3	Spettrometria gamma, beta totale, alfa totale	ISPRA, ARPA Campania
Latte	1	Spettrometria gamma, 90 Sr	ISPRA

Nella mappa di seguito riportata sono indicati i punti di campionamento per le specifiche matrici e nella successiva tabella sono riportati, per ogni matrice, i codici dei campioni prelevati e le tipologie di misura effettuate dai diversi soggetti partecipanti.

Sono state inoltre effettuate circa 30 misure di rateo di dose gamma in aria in un raggio di circa 8 km dalla centrale.

A: Sabbia di mare B: Acqua di falda C: Sedimenti fluviali D: Erba e terreno E: Acqua e pesce di mare F: Pesce di fiume G: Acqua di fiume H: Vegetali I: Frutta L: Latte di bufala M: Aria

	Misure indagine radiometric	a centrale Ga	arigliano	
Matrice	Codice campione (punto mappa)	ISPRA	ARPA Campania	ARPA Lazio
	S5FL (A1)			
	S15FL (A1)			
	S5NFL (A2)			
<u>Sabbia di</u> <u>mare</u>	S15NFL (A2)			
spettrometria	S5FC (A3)			
	S15FC (A3)			
	S5NFC (A4)			
	S15NFC (A4)			
	POZZO8 (B1)	, tot, Pu, Sr-90	, tot, tot, H-3	
Acqua di falda spettrometria, Pu-238,	POZZO5 (B2)	, tot, Pu, Sr-90	, tot, tot, H-3	
Pu-(239+240), tot, tot, Sr-	POZZO4 (B3)	, tot, Pu, Sr-90	, tot, tot, H-3	
90, H-3	H2OFALG1 (B4)	Cs-137	, tot, tot, H-3	
	H2OFALG2 (B4)	Pu, tot, Sr-90		
	SEDG001 (C1)	, tot, Pu		
<u>Sedimenti</u>	SEDF002 (C2)	, tot, Pu		
<u>fluviali</u> spettrometria ,	SEDD003 (C3)	, tot, Pu		
Pu238, Pu (239+240), tot	SEDB004 (C4)	, tot, Pu		
tot	SEDE005 (C5)	, tot, Pu		
	SEDN006 (C6)	, tot, Pu		
<u>Terreno</u>	TOPSGAR1 (D1)			
spettrometria	TOPSGAR2 (D2)			
<u>Erba</u>	ERBGAR1 (D1)			
spettrometria	ERBGAR2 (D2)			

	Misure indagine radiometrica centrale Garigliano												
Matrice	Codice campione (punto mappa)	ISPR	A	ARPA C	ampania	ARPA Lazio							
Pesce di mare spettrometria	PESMGAR (E)												
Pesce di fiume spettrometria	PESFGAR (F)												
Acqua di mare	H2OMGAR1 (E)	Cs-13	37										
spettrometria	H2OMGAR2 (fuori mappa, Mondragone)	Cs-13	37										
Acqua di	H2OFGAR1 (G1)	Cs-13		, tot,	tot, H-3								
<u>fiume</u> spettrometria ,	H2OFGAR2 (G2)	Cs-13	37	, tot,	tot, H-3								
tot, tot, H-3	H2OFGAR3 (G3)	Cs-13	37	, tot,	tot, H-3								
Vegetali e	VEGAR1 melanzane (H)												
<u>frutta</u> spettrometria	FRUGAR2 pesche (I)												
Latte spettrometria , Sr90	LATGAR1 (L)												
Mitili spettrometria	MITGAR1 (fuori mappa, Gaeta)												
	AIRGAR1 (M)	tot,	tot										
	AIRGAR2 (M)	tot,	tot										
	AIRGAR3 (M)	tot,	tot										
Ai-a	AIRGAR4 (M)	tot,	tot										
Aria spettrometria,	AIRGAR5 (M)	tot,	tot										
tot, tot	AIRGAR6 (M)	tot,	tot										
	AIRGAR7 (M)	tot,	tot										
	AIRGAR8 (M)	tot,	tot										
	AIRGAR totale mensile (M)												
Aria spettrometria	1-17 totale mensile (fuori mappa, Sessa Aurunca)												
Aria spettrometria	1-21 totale mensile (fuori mappa, Cellole)												
Aria spettrometria	fondo ambientale totale mensile (fuori mappa, Salerno)												
Terreno spettrometria	fondo ambientale (fuori mappa, Cervinara)												
Terreno spettrometria	fondo ambientale (fuori mappa, Sarno)												

4. Campionamenti

Di seguito si riporta la descrizione delle modalità di campionamento per le matrici acqua di falda (interno centrale), sabbia di mare, sedimenti fluviali, acqua di fiume, acqua di mare, acqua di falda (esterno centrale), terreno, erba, pesce di fiume, pesce di mare, vegetali e frutta, latte di bufala, mitili, particolato atmosferico.

La georeferenziazione esatta dei punti si evince dalle coordinate geografiche presenti sulle schede di campionamento [5].

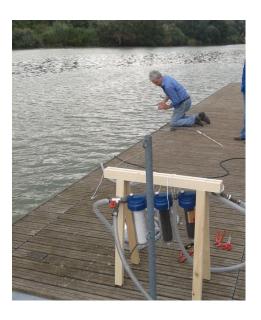
Nelle succitate schede sono altresì riportati ulteriori dettagli sulle modalità di campionamento.

Sabbia di mare

I campioni di sabbia di mare sono stati prelevati con le seguenti modalità:

- sono stati individuati quattro punti di prelievo: due punti (uno a destra e uno a sinistra del fiume) immediatamente a ridosso della foce; altri due punti (uno a destra e uno a sinistra del fiume) a circa 700 metri dai primi due.
- Per ogni punto di prelievo, tramite apposita attrezzatura, sono stati prelevati due campioni: il primo corrispondente allo strato di sabbia compreso tra zero e cinque centimetri ed il secondo corrispondente allo strato di sabbia compreso tra cinque e venti centimetri. Il campione relativo ad un determinato punto di prelievo e ad un determinato strato è stato omogeneizzato in campo e quindi ripartito in quattro aliquote [5].

Sedimenti fluviali


I campioni di sedimento fluviale sono stati prelevati lungo il corso del fiume Garigliano. Tali punti si riferiscono a zone sommerse e di bassa profondità in prossimità dell'argine del fiume nelle quali è particolarmente accentuata la fase di sedimentazione. I campionamenti sono stati effettuati con l'ausilio di due barche ed adottando le seguenti modalità:

per ogni punto di prelievo, con appositi campionatori in plexiglass (aventi diametro e altezza pari a 10 centimetri), sono stati prelevati in totale circa 10 chilogrammi (n° 20 prelievi) di sedimento che veniva raccolto all\(\vec{q}\)interno di un contenitore pi\(\vec{u}\) grande per essere poi omogeneizzato. Come riportato nelle relative schede di campionamento [5], il campione così costituito \(\vec{e}\) stato ripartito in quattro aliquote.

Acqua di fiume

La centrale del Garigliano è situata allanterno di una ansa del fiume. Il campionamento dell'acqua è stato effettuato in tre punti: il primo a circa 15 km (come lunghezza di fiume) a monte dalla centrale; il secondo immediatamente a valle delløopera di scarico della centrale; il terzo, sempre a valle della centrale a circa 10 km dalla centrale e ad una distanza dalla foce di circa 2 km. Il campionamento è avvenuto prelevando løacqua tramite un pompa idraulica immersione. Il sistema prevede che l\(\prevacqua \) (circa 1000 litri) transiti attraverso tre filtri specifici posizionati in serie, il primo dei quali utilizzato per trattenere il particolato in sospensione e gli altri due, identici, utilizzati per løestrazione selettiva del solo Cs-137. In ogni punto di prelievo løARPA Campania ha prelevato un proprio campione di circa 50 litri. La SO.G.I.N. ha prelevato un proprio campione di circa 100 litri.

Acqua di mare

Sono stati scelti 2 punti: uno in prossimità della foce del fiume e l\(\text{saltro}\), tenendo conto della prevalenza delle correnti, a un miglio dalla costa verso sud a fronte della località Mondragone. Le modalità di campionamento per l\(\text{sacqua}\) di mare sono le stesse dell\(\text{sacqua}\) di fiume. In ogni punto di prelievo l\(\text{sARPA}\) Campania ha prelevato un proprio campione di circa 50 litri. La SO.G.I.N. ha prelevato un proprio campione di circa 100 litri.

Acqua di falda (interno centrale)

Nelløarea della centrale sono situati una serie di pozzi per il controllo delløacqua di falda. Tenendo in considerazione løandamento della falda acquifera sono stati scelti tre pozzi: il primo (pozzo 8) a monte della centrale (corrispondente al punto P8 del Programma sorveglianza ambientale della SO.G.I.N.) [8]; il secondo (pozzo 4) e il terzo (pozzo 5) a valle della centrale (corrispondenti rispettivamente ai punti P4 e P5 del Programma sorveglianza ambientale della SO.G.I.N.) [8]. Per ogni pozzo si è proceduto, tramite un contenitore di plastica zavorrato, al prelievo di circa 13,4 litri di acqua di falda. Il campione complessivo è stato inizialmente messo in un contenitore di capacità opportuna, quindi, per mezzo del rubinetto di cui il contenitore era dotato, ripartito agli Enti presenti secondo la relativa scheda di campionamento [5]. I tre campioni di ISPRA (composti ognuno da due taniche in plastica di 3 litri) sono stati, al termine del campionamento, acidificati tramite løaggiunta, in ogni tanica, di acido cloridrico.

Acqua di falda (esterno centrale)

Questo campionamento di acqua di falda si differenzia da quello descritto nel paragrafo precedente in quanto il punto di campionamento è situato esternamente e non internamente al perimetro della centrale del Garigliano ed è corrispondente ad un pozzo sotterraneo (con prelievo a circa 50 metri sotto il livello del suolo) di una casa privata i cui proprietari hanno concesso la propria disponibilità a tale prelievo. Il prelievo è stato effettuato sia con le modalità descritte per l\(^{\text{acqua}}\) di fiume (campione H2OFALG1) ai fini della misura del Cs-137, sia prelevando un campione tal quale di circa 100 litri (campione H2OFALG2), ai fini delle misure di alfa totale, Sr-90, isotopi del plutonio (Pu-238 e Pu-(239+240). ARPA Campania ha prelevato un campione di 50 litri e SO.G.I.N. un campione di 100 litri.

Terreno (top soil) ed erba

Il terreno è stato campionato individuando due zone relativamente indisturbate di terreno e prelevando, da una superficie quadrata con lato pari ad un metro, i primi cinque centimetri in profondità di suolo. Il suolo è stato miscelato e quindi suddiviso nelle varie aliquote [5]. In prossimità dei punti di prelievo sono stati quindi individuati dei punti dai quali prelevare erba sempre a partire da un quadrato di un metro di lato.

Pesce di mare

Il pesce di mare è stato campionato pescando a traina con canne e filaccioni. Sono state pescate quattro specie di pesci: sugarello (T. trachurus), sgombro (S. scombrus), palamita (S. sarda), leccia stella (T.ovatus). Subito dopo la cattura i pesci sono stati eviscerati e conservati in luogo refrigerato fino alla consegna al laboratorio radiometrico della SPRA per i successivi trattamenti ed analisi.

Pesce di fiume

Il pesce di fiume è stato campionato utilizzando una rete stanziale (lunghezza circa 100 m) collocata in acqua per circa una notte; il punto di pesca è stato individuato a circa 10 km (di tratto di fiume) a valle della centrale e a una distanza dalla foce di circa 2 km.

La specie pescata è stata di soli cefali (M. cephalus), con løunica eccezione di un cavedano (S. squalus).

Subito dopo la cattura i pesci sono stati eviscerati e conservati in luogo refrigerato fino alla consegna al laboratorio radiometrico della SPRA per il successivo trattamento ed analisi.

Vegetali e frutta

Il campione di vegetali, nello specifico melanzane, è stato prelevato presso un orto privato situato a circa 3 Km in direzione sud-est dalla centrale nella frazione di Campo Felice, mentre il campione di frutta, nello specifico pesche, è stato prelevato presso una azienda produttrice situata a circa 1 km dalla centrale, in prossimità del sistema di prelievo del particolato atmosferico.

Latte di bufala

Il latte di bufala è stato prelevato presso una azienda produttrice situata sulla via Appia a circa 3 km dalla centrale.

Mitili

I mitili sono stati acquistati a Latina presso un mercato di vendita al dettaglio di prodotti ittici. I mitili acquistati provengono da una filiera che prevede la nascita del mollusco in Spagna e il successivo trasferimento in zone marine antistanti Gaeta per la crescita fino alle dimensioni adatte alla vendita.

Particolato atmosferico

Il particolato atmosferico è stato prelevato alla interno di una della capannine utilizzate dalla stessa SO.G.I.N. nella interno di una della capannine utilizzate dalla stessa SO.G.I.N. nella interna di sorveglianza ambientale a circa 1km a sud della centrale. È stato utilizzato un sistema simile a quello adottato dalla SO.G.I.N. . Il campionamento è stato effettuato dal 01/10/2013 al 25/10/2013, utilizzando dei filtri in carta da 47 mm di diametro, sostituiti due volte a settimana (il martedì e il venerdì) per un totale di quattro settimane. Su ogni singolo filtro è stata effettuata la misura di alfa totale e beta totale, mentre la misura di spettrometria gamma è stata effettuata sul pacchetto degli otto filtri.

5. Risultati delle misure

I risultati delle misure effettuate, per ciascuna matrice campionata, sono riportati nelle tabelle 1-15. I valori delle misure sono riferiti alla data di campionamento delle relative matrici.

Per sedimenti, sabbie e terreni i valori delle misure sono riferiti a "peso secco", dopo essiccazione fino a peso costante con residuo di umidità inferiore allo 0,1%; per matrici alimentari ed erba i valori delle misure sono riferiti a "peso fresco".

Dove è presente il solo valore della MDC (Minimum Detectable Concentration) significa che il valore della misura è minore della stessa MDC.

Per completezza è stato riportato anche il valore di K-40, radionuclide naturale abbondantemente presente nelle matrici ambientali.

Ulteriori dettagli sulle misure sono riportati sui rapporti di prova prodotti dallø ISPRA [1], ARPA Campania [3] e ARPA Lazio [2].

Dagli stessi rapporti è emerso che le misure non hanno evidenziato la presenza di altri radionuclidi artificiali differenti da quelli riportati nelle succitate tabelle.

Le misure di rateo di dose gamma in aria hanno mostrato una variabilità fra 62 nanoSievert/h e 198 nanoSievert/h.

			ISPRA		ARI	PA Campa		ARPA Lazio			
Codice	Nuclide	Act	Unc	MDC	Act	Unc	MDC	Act	Unc	MDC	
campione		(Bq/Kg)	(Bq/Kg)	(Bq/Kg)	(Bq/Kg)	(Bq/Kg)	(Bq/Kg)	(Bq/Kg)	(Bq/Kg)	(Bq/Kg)	
	Cs-137	0,219	0,019	0,12				0,30	0,20	0,35	
C5EI	Cs-134			0,12						0,12	
SSIL	Co-60			0,11						0,076	
S15FL C1 S15FL C2 S15FL C3 S15FL C4 S15NFL C4 S15NFL C5 S15FC C5 S15FC C6 S15FC C6 S15NFC C7 S15	K-40	316	13	1,7				386	14	6,5	
	Cs-137	0,267	0,024	0,16				0,29	0,13	0,18	
C15EI	Cs-134			0,15						0,11	
SISIL	Co-60			0,14						0,062	
	K-40	464	19	1,9				475	14	7,1	
	Cs-137	0,189	0,019	0,13						0,18	
CSNIEI	Cs-134			0,12						0,14	
SSNIL	Co-60			0,13						0,11	
	K-40	352	15	1,8				307	12	7,1	
	Cs-137	0,300	0,026	0,16				0,43	0,24	0,36	
C15NIEI	Cs-134			0,15						0,17	
SISINIL	Co-60			0,14						0,19	
	K-40	555	23	1,7				575	20	7,5	
	Cs-137	0,181	0,023	0,17	0,218	0,071	0,093				
S5EC	Cs-134			0,17			0,078				
331-C	Co-60			0,13			0,078				
	K-40	144,3	6,1	2,0	190,27	14,93	0,909				
	Cs-137	0,327	0,023	0,10	0,417	0,104	0,131				
S15EC	Cs-134			0,10			0,112				
31310	Co-60			0,086			0,137				
	K-40	420	18	1,5	504,88	39,62	1,275				
	Cs-137	0,175	0,016	0,10	0,271	0,106	0,114				
SSNEC	Cs-134			0,10			0,104				
SSINITE	Co-60			0,079			0,117				
	K-40	176,2	7,4 0,020	1,3	293,72	23,31	1,391				
	Cs-137	0,232	0,020	0,11	0,321	0,099	0,139				
S15NEC	Cs-134			0,11			0,116				
SISINIC	Co-60			0,11			0,097				
	K-40	346	15	1,7	459,65	36,1	1,464				

Tabella 1- Misure sabbia di mare

			ISPRA		ARP	A Camp	ania	Al	RPA La	zio
Codice	Nuclide	Act	Unc	MDC	Act	Unc	MDC	Act	Unc	MDC
campione	Nuclide	(Bq/l)	(Bq/l)	(Bq/l)	(Bq/l)	(Bq/l)	(Bq/l)	(Bq/l)	(Bq/l)	(Bq/l)
	Cs-137			0,10			0,073			
	Cs-134			0,13			0,069			
	Co-60			0,10			0,030			
	K-40			3,3			1,540			
POZZO8	H-3						3			
FUZZU8	Pu-238			0,000010						
	Pu-(239+240)			0,0000074						
	Sr-90	0,00122	0,00039	0,00051						
	- tot	0,0577	0,0070	0,0050			0,0134			
	- tot	0,209	0,010	0,0070	0,0843	0,0183	0,0229			
	Cs-137			0,12			0,112			
	Cs-134			0,11			0,088			
	Co-60			0,11			0,087			
	K-40	2,48	0,74	2,4			0,894			
D07705	H-3						3			
POZZO5	Pu-238			0,000010						
	Pu-(239+240)			0,0000068						
	Sr-90			0,00051						
	- tot	0,0848	0,0087	0,0060	0,0292	0,0268	0,0226			
	- tot	0,233	0,011	0,0080	0,1971	0,0347	0,0385			
	Cs-137	,	,	0,096	•	,	0,065			
	Cs-134			0,11			0,063			
	Co-60			0,095			0,063			
	K-40	10,68	0,60	2,0			1,195			
DO7704	H-3						3			
POZZO4	Pu-238			0,0000090						
	Pu-(239+240)			0,0000066						
	Sr-90			0,00055						
	- tot	0,137	0,011	0,0060			0,1718			
	- tot	0,938	0,033	0,0090	0,7783	0,2164	0,2928			
	Cs-137	,	,	0,00010	,	,	0,0417			
	Cs-134			,			0,0409			
	Co-60						0,0265			
H2OFALG1	K-40				43,870	4,169	1,065			
	H-3				,	,	3			
	- tot				0,0141	0,0048	0,0093			
	- tot				,		0,0238			
	Pu-238			0,00000082			, ==			
	Pu-(239+240)			0,00000048						
H2OFALG2	Sr-90	0,00043	0,00013	0,00019						
	- tot	0,127	0,012	0,0070						
	- tot	0,687	0,026	0,0090						
	101	0,007	0,020	0,0070						

Tabella 2 ó *Misure acqua di falda*

			ISPRA		ARI	PA Camp	ania	A	RPA Laz	io
Codice	Nuclide	Act	Unc	MDC	Act	Unc	MDC	Act	Unc	MDC
campione	Nuclide	(Bq/Kg)								
	Cs-137	8,55	0,58	0,28	9,845	0,801	0,103	7,66	0,62	0,39
	Cs-134			0,26			0,086			0,34
	Co-60			0,27			0,087			0,30
SEDG001	K-40	518	22	3,6	682,04	53,34	0,992	551	23	8,0
	Pu-238	0,0096	0,0024	0,0017						
	Pu-(239+240)	0,261	0,024	0,0017						
	- tot	331	24	7,3						
	Cs-137	1,89	0,12	0,22	2,051	0,237	0,168	1,14	0,44	0,38
	Cs-134			0,20			0,137			0,32
	Co-60			0,22			0,148			0,40
SEDF002	K-40	774	32	3,2	920,4	72,08	1,585	563	23	8,0
	Pu-238			0,0017						
	Pu-(239+240)	0,0193	0,0032	0,00090						
	- tot	316	24	8,2						
	Cs-137	1,280	0,080	0,17	1,517	0,196	0,153	1,20	0,38	0,38
	Cs-134			0,17			0,130			0,31
	Co-60			0,15			0,097			0,27
SEDD003	K-40	522	22	2,7	657,28	51,65	1,540	580	23	7,5
	Pu-238			0,0015						
	Pu-(239+240)	0,0278	0,0039	0,0013						
	- tot	243	20	9,4						
	Cs-137	3,38	0,21	0,21	5,395	0,468	0,141	3,44	0,38	0,36
	Cs-134			0,20			0,117			0,28
	Co-60			0,17			0,096			0,73
SEDB004	K-40	491	21	3,3	620,32	48,71	1,397	527	20	7,2
	Pu-238			0,0014						
	Pu-(239+240)	0,0298	0,0040	0,0010						
	- tot	252	20	9,0						
	Cs-137	0,880	0,063	0,26	1,025	0,188	0,217	2,30	0,44	0,46
	Cs-134	-		0,25			0,185			0,34
	Co-60			0,22			0,192			0,34
SEDE005	K-40	545	23	3,5	619,02	40,23	1,918	805	29	7,5
	Pu-238			0,0015						
	Pu-(239+240)	0,0275	0,0038	0,0011						
	- tot	232	19	10						
	Cs-137	2,42	0,15	0,26	2,622	0,26	0,129	1,69	0,44	0,36
	Cs-134			0,25			0,109			0,24
	Co-60			0,22			0,113			0,28
SEDN006	K-40	426	18	3,5	537,39	42,27	1,372	484	20	7,5
	Pu-238			0,0015						
	Pu-(239+240)	0,0608	0,0073	0,0013						
	- tot	267	21	7,5						_

Tabella 3- Misure sedimenti fluviali

			ISPRA		ARI	PA Campa	ania	ARPA Lazio			
Codice	Nuclide	Act	Unc	MDC	Act	Unc	MDC	Act	Unc	MDC	
campione	ruchae	(Bq/Kg)	(Bq/Kg)	(Bq/Kg)	(Bq/Kg)	(Bq/Kg)	(Bq/Kg)	(Bq/Kg)	(Bq/Kg)	(Bq/Kg)	
	Cs-137	5,79	0,36	0,32	8,258	0,811	0,117	6,80	0,40	0,32	
TOPSGAR1	Cs-134			0,26			0,092			0,25	
TOPSGART	Co-60			0,30			0,084			0,25	
	K-40	573	24	5,2	808,59	72,54	1,429	805	24	6,5	
	Cs-137	7,21	0,44	0,29	9,880	0,937	0,084	8,46	0,40	0,35	
TOPSGAR2	Cs-134			0,29			0,080			0,18	
TOPSGAR2	Co-60			0,24			0,075			0,21	
	K-40	521	22	3,5	645,27	56,65	1,130	619	19	6,6	

Tabella 4 ó Misure terreno

		ISPRA			ARF	PA Campa	ania	ARPA Lazio			
Codice	Nuclide	Act	Unc	MDC	Act	Unc	MDC	Act	Unc	MDC	
campione		(Bq/Kg)	(Bq/Kg)	(Bq/Kg)	(Bq/Kg)	(Bq/Kg)	(Bq/Kg)	(Bq/Kg)	(Bq/Kg)	(Bq/Kg)	
	Cs-137			0,27			0,216			0,97	
ERBGAR1	Cs-134			0,26			0,205			0,77	
EKBUAKI	Co-60			0,31			0,144			0,57	
	K-40	287	13	6,4	241,96	19,80	5,36	476	31	7,2	
	Cs-137			0,19			0,238			0,25	
ERBGAR2	Cs-134			0,20			0,197			0,59	
ERBGAR2	Co-60			0,24			0,248			0,66	
	K-40	222,7	9,8	4,5	299,06	24,28	5,360	485	28	7,1	

Tabella 5 ó *Misure erba*

			ISPRA		ARI	PA Campa	ania	ARPA Lazio			
Codice	Nuclide	Act	Unc	MDC	Act	Unc	MDC	Act	Unc	MDC	
campione	((Bq/Kg)	(Bq/Kg)	(Bq/Kg)	(Bq/Kg)	(Bq/Kg)	(Bq/Kg)	(Bq/Kg)	(Bq/Kg)	(Bq/Kg)	
_	Cs-137	1,101	0,024	0,079							
PESMGAR	Cs-134			0,055							
FESNIGAN	Co-60			0,055							
	K-40	94,8	4,0	1,6							

Tabella 6 ó Misure pesce di mare

			ISPRA		ARP	A Camp	ania	ARPA Lazio			
Codice	Nuclide	Act	Unc	MDC	Act	Unc	MDC	Act	Unc	MDC	
campione		(Bq/l)	(Bq/l)	(Bq/l)	(Bq/l)	(Bq/l)	(Bq/l)	(Bq/l)	(Bq/l)	(Bq/l)	
	Cs-137	0,00171	0,00017	0,00011			0,055			0,0079	
H2OMGAR2	Cs-134						0,053			0,0050	
n20MGAK2	Co-60						0,055			0,0044	
	K-40				102,31	9,21	1,158	12,13	0,47	0,042	
	Cs-137	0,00232	0,00023	0,000053			0,329				
H2OMGAR1	Cs-134						0,319				
	Co-60						0,203				
	K-40				309,85	27,49	5,162				

Tabella 7 ó *Misure acqua di mare*

ISPRA					ARI	PA Campa	ania	ARPA Lazio			
Codice	Nuclide	Act	Unc	MDC	Act	Unc	MDC	Act	Unc	MDC	
campione	Nuchue	(Bq/Kg)	(Bq/Kg)	(Bq/Kg)	(Bq/Kg)	(Bq/Kg)	(Bq/Kg)	(Bq/Kg)	(Bq/Kg)	(Bq/Kg)	
	Cs-137			0,054							
PESFGAR	Cs-134			0,054							
PESFGAR	Co-60			0,056							
	K-40	76,4	3,2	1,1							

Tabella 8 ó Misure pesce di fiume

		ISPRA			ARI	ARPA Campania			ARPA Lazio			
Codice	Nuclide	Act	Unc	MDC	Act	Unc	MDC	Act	Unc	MDC		
campione		(Bq/Kg)	(Bq/Kg)	(Bq/Kg)	(Bq/Kg)	(Bq/Kg)	(Bq/Kg)	(Bq/Kg)	(Bq/Kg)	(Bq/Kg)		
	Cs-137			0,020			0,183					
VEGGAR1	Cs-134			0,019			0,135					
melanzane	Co-60			0,023			0,179					
	K-40	100,6	4,2	0,38	54,20	5,47	1,436					
	Cs-137			0,019			0,074					
FRUGAR1	Cs-134			0,020			0,059					
pesche	Co-60			0,021			0,064					
	K-40	50,3	2,1	0,39	58,86	5,12	1,536					

Tabella 9 ó *Misure vegetali e frutta*

			ISPRA		AR	PA Campa	ania	A	RPA Laz	io
Codice campione	Nuclide	Act (Bq/l)	Unc (Bq/l)	MDC (Bq/l)	Act (Bq/l)	Unc (Bq/l)	MDC (Bq/l)	Act (Bq/l)	Unc (Bq/l)	MDC (Bq/l)
	Cs-137	-		0,00011			0,045			-
	Cs-134						0,042			
	Co-60						0,033			
H2OFGAR1	K-40				6,88	1,46	0,975			
	H-3						3			
	- tot				0,0301	0,0065	0,0083			
	- tot				0,0604	0,0174	0,0238			
	Cs-137			0,000055			0,0219			
	Cs-134						0,0228			
	Co-60						0,0227			
H2OFGAR2	K-40						0,606			
	H-3						3			
	- tot				0,0353	0,0066	0,0083			
	- tot				0,0605	0,0165	0,0174			
	Cs-137			0,000078			0,072			
	Cs-134						0,062			
	Co-60						0,060			
H2OFGAR3	K-40						0,742			
	H-3						3			
	- tot				0,0401	0,0069	0,0083			
	- tot			·	0,0730	0,0182	0,0180			

 $\textbf{Tabella 10} \ \'o \ \textit{Misure acqua di fiume}$

			ISPRA		ARI	PA Campa	ania	A	RPA Laz	io
Codice	Nuclide	Act	Unc	MDC	Act	Unc	MDC	Act	Unc	MDC
campione	Nucliue	(Bq/Kg)	(Bq/Kg)	(Bq/Kg)	(Bq/Kg)	(Bq/Kg)	(Bq/Kg)	(Bq/Kg)	(Bq/Kg)	(Bq/Kg)
MITC AD1	Cs-137									0,11
MITGAR1	Cs-134									0,14
(Gaeta 10 gen 2014)	Co-60									0,13
gen 2014)	K-40							19,96	1,48	4,07

Tabella 11 ó *Misure mitili*

			ISPRA		ARI	PA Camp	ania	A	RPA Laz	io
Codice campione	Nuclide	Act (Bq/l)	Unc (Bq/l)	MDC (Bq/l)	Act (Bq/l)	Unc (Bq/l)	MDC (Bq/l)	Act (Bq/l)	Unc (Bq/l)	MDC (Bq/l)
	Cs-137	-	-	0,054						
	Cs-134			0,047						
LATGAR1	Co-60			0,047						
	K-40	45,8	1,9	1,1						
	Sr-90	0,0176	0,0027	0,0029						

Tabella 12 ó Misure latte di bufala

			ISPRA	
Codice campione	misura	Act	Unc	MDC
		(Bq/m^3)	(Bq/m3)	(Bq/m3)
	- tot (in termini di U-236	0.0000515	0.0000040	0.0000012
AIRGAR1	equivalente)	0,0000515	0,0000049	0,0000013
	- tot (in termini di K-40	0.000520	0.000027	0.0000042
	equivalente) - tot (in termini di U-236	0,000538	0,000037	0,0000043
	equivalente)	0,0000145	0,0000022	0,0000016
AIRGAR2	- tot (in termini di K-40	0,0000143	0,0000022	0,0000010
	equivalente)	0,000366	0,000025	0,0000053
	- tot (in termini di U-236	0,000300	0,000023	0,0000033
175 6 1 5 6	equivalente)	0,0000223	0,0000026	0,0000013
AIRGAR3	- tot (in termini di K-40	0,0000===		0,000000
	equivalente)	0,000348	0,000024	0,0000042
	- tot (in termini di U-236	,	,	,
AIRGAR4	equivalente)	0,0000123	0,0000026	0,0000025
AIRGAR4	- tot (in termini di K-40			
	equivalente)	0,000306	0,000022	0,0000081
	- tot (in termini di U-236			
AIRGAR5	equivalente)	0,0000264	0,0000031	0,0000021
7 HKO7 HC3	- tot (in termini di K-40			
	equivalente)	0,000522	0,000036	0,0000045
	- tot (in termini di U-236	0.0000000	0.0000026	0.0000010
AIRGAR6	equivalente)	0,0000303	0,0000036	0,0000018
	- tot (in termini di K-40	0.000622	0.000042	0.0000050
	equivalente)	0,000622	0,000042	0,0000059
	- tot (in termini di U-236	0,0001137	0,0000095	0,0000013
AIRGAR7	equivalente) - tot (in termini di K-40	0,0001137	0,0000093	0,0000013
	equivalente)	0,000561	0,000038	0,0000044
	- tot (in termini di U-236	0,000301	0,000036	0,0000044
	equivalente)	0,000239	0,000019	0,000017
AIRGAR8	- tot (in termini di K-40	0,000237	0,000017	0,000017
	equivalente)	0,000738	0,000050	0,0000056
	•	. ,	.,	.,
	Cs-137			0,0000016
AIRMONTH1(pacchetto	Cs-134			0.0000015
8 filtri: 25 gg - dal 1/10	Co 137			0,0000019
al 25/10)	Co-60			0.0000021
				0,0000021
	K-40			0,000033

Tabella 13 ó *Misure particolato aria*

	ARPA Campania Sessa Aurunca										
	misura	Act (Bq/m3)	Unc (Bq/m3)	MDC (Bq/m3)				Act (Bq/m3)	Unc (Bq/m3)	MDC (Bq/m3)	
	Cs-137	(Eq/IIIe)	(Bq/III)	4,277E-05			Cs-137	(Bq/IIIS)	(Bq/IIIS)	4,241E-05	
	Cs-134			1,342E-05			Cs-134			5,439E-05	
1	Co-60			1,999E-05		10	Co-60			6,510E-05	
	K-40			1,149E-03			K-40			1,452E-03	
	Cs-137			1,099E-04			Cs-137			5,621E-05	
	Cs-134			8,541E-05			Cs-134			4,102E-05	
2	Co-60			1,142E-04		11	Co-60			2,766E-05	
	K-40			2,846E-03			K-40			1,396E-03	
	Cs-137			4,380E-05			Cs-137			8,255E-05	
	Cs-134			3,046E-05		10	Cs-134			1,031E-04	
3	Co-60			2,692E-05		12	Co-60			1,425E-04	
	K-40			1,446E-03			K-40			2,795E-03	
	Cs-137			4,375E-05			Cs-137			6,73E-05	
4	Cs-134			3,841E-05		12	Cs-134			7,24E-05	
4	Co-60			4,051E-05		13	Co-60			1,00E-04	
	K-40			1,252E-03			K-40			2,82E-03	
	Cs-137			4,916E-05			Cs-137			7,42E-05	
5	Cs-134			4,384E-05		14	Cs-134			6,65E-05	
3	Co-60			4,642E-05		14	Co-60			1,12E-04	
	K-40			1,422E-03			K-40			2,12E-03	
	Cs-137			4,830E-05			Cs-137			7,60E-05	
6	Cs-134			4,362E-05		15	Cs-134			7,97E-05	
0	Co-60			6,610E-05		13	Co-60			7,49E-05	
	K-40	1,815E-03	8,93E-04	3,59E-04			K-40			2,23E-03	
	Cs-137			8,999E-05			Cs-137			5,70E-05	
7	Cs-134			8,337E-05		16	Cs-134			4,95E-05	
/	Co-60			6,944E-05		10	Co-60			5,43E-05	
	K-40			2,229E-03			K-40			1,32E-03	
	Cs-137			4,421E-05			Cs-137			4,05E-05	
8	Cs-134			3,914E-05		17	Cs-134			2,11E-05	
0	Co-60			5,882E-05		17	Co-60			4,78E-05	
	K-40			1,568E-03			K-40			1,30E-03	
	Cs-137			4,043E-04			Cs-137			3,04E-06	
9	Cs-134			1,418E-04		Totale	Cs-134			5,02E-06	
9	Co-60			3,454E-04		rotale	Co-60			3,28E-06	
	K-40			6,237E-03			K-40			1,23E-04	

Tabella 14 ó Misure particolato aria

				ARPA Campa	nia Cellol	e			
	misura	Act	Unc	MDC		misura	Act	Unc	MDC
		(Bq/m3)	(Bq/m3)	(Bq/m3)			(Bq/m3)	(Bq/m3)	(Bq/m3)
	Cs-137			1,154E-04		Cs-137			1,855E-05
1	Cs-134			9,724E-05	12	Cs-134			1,720E-05
1	Co-60			7,156E-05	1-	Co-60			1,781E-05
	K-40			2,937E-03		K-40			6,85E-03
	Cs-137			9,392E-05		Cs-137			1,146E-04
2	Cs-134			7,690E-05	13	Cs-134			9,534E-05
	Co-60			8,037E-05	13	Co-60			1,049E-04
	K-40			2,452E-03		K-40			3,031E-03
	Cs-137			6,668E-05		Cs-137			1,375E-04
3	Cs-134			2,754E-05	14	Cs-134			1,166E-04
3	Co-60			7,827E-05	14	Co-60			1,086E-04
	K-40			8,505E-04		K-40			3,041E-03
	Cs-137			4,821E-05		Cs-137			1,135E-04
4	Cs-134			4,451E-05	1.5	Cs-134			7,666E-05
4	Co-60			5,637E-05	15	Co-60			9,287E-05
	K-40			5,770E-04		K-40			2,953E-03
	Cs-137			3,223E-05		Cs-137			8,972E-05
_	Cs-134			8,297E-06	1.0	Cs-134			3,689E-05
5	Co-60			2,564E-05	16	Co-60			6,834E-05
	K-40			7,760E-04		K-40			2,574E-03
	Cs-137			1,020E-04		Cs-137			8,633E-05
_	Cs-134			8,515E-05	1.5	Cs-134			2,910E-05
6	Co-60			4,910E-05	17	Co-60			6,873E-05
	K-40			2,276E-04		K-40			1,239E-03
	Cs-137			1,373E-04		Cs-137			3,180E-05
_	Cs-134			2,773E-04	4.0	Cs-134			7,304E-05
7	Co-60			1,744E-04	18	Co-60			8,370E-05
	K-40			8,039E-03		K-40			1,965E-04
	Cs-137			1,180E-04		Cs-137			6,982E-05
	Cs-134			3,526E-05		Cs-134			6,027E-05
8	Co-60			7,282E-05	19	Co-60			7,390E-05
	K-40			2,995E-03		K-40			2,384E-03
	Cs-137			1,070E-04		Cs-137			7,133E-05
	Cs-134			1,253E-04		Cs-134			4,635E-05
9	Co-60			6,615E-05	20	Co-60			7,077E-05
	K-40			3,600E-03		K-40			1,859E-03
	Cs-137			6,173E-05		Cs-137			7,603E-05
	Cs-137			5,686E-05		Cs-137			6,874E-05
10	Co-60			4,167E-05	21	Co-60			9,578E-05
	K-40			1,442E-03		K-40			1,833E-03
	Cs-137			6,810E-05		Cs-137			4,24E-06
	Cs-137			1,199E-04		Cs-137			5,82E-06
11					Totale				
	Co-60			9,515E-05		Co-60			4,40E-06
	K-40			3,410E-03		K-40			1,26E-04

Tabella 15 ó Misure particolato aria

6. Fondo ambientale regionale e riferimenti a livello nazionale

Per analisi di tipo comparativo dei risultati delle misure effettuate nella presente indagine sono stati presi a riferimento sia valori di fondo ambientale regionale, sia valori a livello nazionale della REte nazionale di SOrveglianza della RADioattività ambientale (RESORAD). Tale rete discende dagli adempimenti derivanti dal Trattato Euratom del 1957 in materia di monitoraggio della radioattività nellambiente e negli alimenti, ed è regolamentata dallamenti. 104 del D.Lgs. n. 230/95 e successive modifiche. Le disposizioni di tale articolo, tra laltro, affidano alla SPRA compiti di coordinamento tecnico delle reti di monitoraggio della radioattività ambientale, tra cui la raccolta dei relativi dati. Essa risponde altresì alla gesigenza di potenziare il sistema dei controlli emersa a fronte della incidente di Chernobyl del 1986.

La rete RESORAD è attualmente costituita dalle Agenzie regionali e provinciali per la protezione delløambiente (ARPA/APPA) ed altri istituti ed enti idoneamente attrezzati, quali la Croce Rossa Italiana (CRI) e gli Istituti Zooprofilattici Sperimentali (IIZZSS) [10].

<u>Fondo ambientale regionale</u>: la scelta dei siti di campionamento è stata indirizzata dalla distanza, circa 100 km, dalla centrale del Garigliano, e dall\(\vec{q}\)assenza di interferenze da ricadute da sorgenti locali, privilegiando aree esenti da ricadute causate da fogliame. Le matrici campionate sono l\(\vec{q}\)aria (particolato atmosferico) ed il terreno (top soil). I valori delle misure effettuate sono riportate rispettivamente in tabella 16 e tabella 17.

Riferimenti a livello nazionale: le tabelle 18-31, in allegato, riportano, per ciascuna specifica matrice, una elaborazione dei dati presenti nella banca dati DBRad della rete RESORAD relativa alle misure del triennio 2010-2012. In particolare sono riportati per ogni matrice: radionuclide di interesse, numero di misure, valore minimo e il valore massimo della MDC, valore minimo e il valore massimo delle misure al di sopra della MDC, valore medio delle misure al di sopra della MDC, località del campionamento della matrice ove sono stati riscontrati i valori massimi e minimi. Per alcuni radionuclidi tutte le misure non eccedono mai il valore della MDC più alta. Per altri radionuclidi (ad esempio gli isotopi del plutonio nei sedimenti e nelle acque di falda) non sono presenti misure in quanto non previste dai piani di campionamento nazionale o regionali. Relativamente ai sedimenti, dati di letteratura [11] riportano per il plutonio un intervallo di concentrazioni comprese tra 0,01Bq/kg e 0,65 Bq/kg. Per quanto riguarda loacqua di falda va tenuto presente il valore, indicato nella Direttiva 2013/51/EURATOM del 22/10/2013 che stabilisce requisiti per la salute umana relativamente alle sostanze radioattive presenti nelle acque destinate al consumo umano, pari a 0,6Bq/l [12]. In merito al rateo di dose gamma in aria i dati riscontrati rientrano nella variabilità dei dati a livello nazionale i quali, nel quinquennio 2007-2011 [13], sono compresi nell\(\text{gintervallo 50 \(\text{o} \) 320 nanoSievert/h, con un valore di picco pari a circa 460 nanoSievert/h. Inoltre, data læsiguità delle misure relative alla matrice õlatte di bufalaö, sono state riportate le informazioni anche per la matrice õlatte vaccinoö sebbene non campionata in questa indagine.

ARPA Campania Salerno (Fondo Ambientale mese)										
	misura	Act (Bq/m ³)	Unc (Bq/m ³)	$\frac{\text{MDC}}{(\text{Bq/m}^3)}$						
	Cs-137			7,11E-06						
Gennaio/Marzo	Cs-134			6,89E-06						
2013	Co-60			8,26E-06						
	K-40			2,53E-04						

Tabella 16 ó Misure particolato aria (Fondo Ambientale)

ARPA Campania Cervinara										
	Nuclide	Act (Bq/Kg)	Unc (Bq/Kg)	MDC (Bq/Kg)						
	Cs-137	19,59	1,70	0,341						
17/12/2013	Cs-134			0,190						
1//12/2013	Co-60			0,170						
	K-40	1368	108	4,65						

ARPA Campania Sarno									
	Nuclide	Act (Bq/Kg)	Unc (Bq/Kg)	MDC (Bq/Kg)					
	Cs-137	6,628	0,620	0,370					
19/12/2013	Cs-134			0,210					
19/12/2013	Co-60			0,349					
	K-40	1101,7	87,65	5,22					

Tabella 17 ó Misure terreno Campania (Fondo Ambientale)

7. Valutazioni e conclusioni

Ai fini di una valutazione delle concentrazioni di radioattività riscontrate nelle matrici campionate nel corso della presente indagine va tenuta in considerazione la contaminazione da radionuclidi artificiali presente sul territorio italiano a seguito del fallout conseguente allaincidente nucleare di Chernobyl del 1986. Come è noto, le condizioni meteo-climatiche influenzarono inizialmente la distribuzione di tale contaminazione; in particolare la concentrazione di Cs-137 nel terreno, ancora oggi presente, mostra non solo una variabilità su scala nazionale (a secondo della latitudine, della del terreno, etc.), ma anche una variabilità su scala locale (zone limitrofe possono presentare differenze in concentrazione, anche se contenute, in funzione della costituzione del terreno, della copertura vegetativa, di processi di smottamento o dissodamento eventualmente subiti, etc.) ed una variabilità sul profilo verticale dovuto ad un lento processo di migrazione. I valori riscontrabili nei terreni del territorio nazionale variano, pertanto, da alcune unità a alcune centinaia di Bq/kg.

Dalløanalisi comparativa fra i risultati delle misure effettuate nella presente indagine e i valori di fondo ambientale regionale nonché i valori di riferimento a livello nazionale o internazionale non emergono anomalie. La variabilità dei valori rilevati nelløindagine rientra nelløambito di quella, precedentemente descritta, riscontrabile su scala regionale nonché nazionale e non si evidenziano situazioni di rilevanza radiologica.

8. Riferimenti

- [1] Rapporti di prova delle misure effettuate dal servizio RIS-LAB ISPRA: Prot . interno ISPRA 444/2014 del 25/2/2014
- 1370, 1371, 1372, 1373, 1374, 1375, 1376, 1377, 1381, 1382, 1383, 1384, 1385, 1386, 1387, 1388, 1389, 1390, 1391, 1392, 1393, 1394, 1395, 1396, 1397, 1398, 1399, 1400, 1401, 1402, 1403, 1404, 1405, 1406, 1407, 1408, 1409, 1410, 1411, 1412, 1413, 1414, 1415, 1416, 1417, 1418, 1419, 1420, 1421, 1422, 1423, 1424.
- [2] Rapporti di prova delle misure effettuate da ARPA Lazio: Prot. Interno ISPRA 443/2014 del 25/2/2014
- SVT 2013/ 02035/01710, SVT 2013/ 02041/01881, SVT 2013/ 02037/01712, SVT 2013/ 02040/01535, SVT 2013/ 02042/01927, SVT 2013/ 02039/01508, SVT 2013/ 02428/01867, SVT 2013/ 02043/01866, SVT 2013/ 02038/01863, SVT 2013/ 02036/01711, SVT 2013/ 02380/02080, SVT 2013/ 02381/02081,SVT 2013/ 02379/02079, SVT 2013/ 02044/02078, SVT 2013/ 02382/02082, SLT 2014/00030/00001
- [3] Rapporti di prova delle misure effettuate da ARPA Campania: Prot. ISPRA: PEC 7967 del 20/02/2014, PEC 8334 del 21/02/2014, Prot. Interno ISPRA 431/2014 del 24/2/2014.
- [4] Resoconti di riunione: Prot 437/2014 del 25/2/2014
- [5] ó Schede di campionamento: Prot 438/2014 del 25/2/2014
- [6] ó Trattato EURATOM
- [7] Decreto del Ministero dello Sviluppo economico del 28/09/2012 di autorizzazione delle operazioni di disattivazione
- [8] Programma sorveglianza ambientale SO.G.I.N. GR RS 00610 ó rev. 01 del 25/03/2013
- [9] Corografia punti di prelievo rete ambientale Elaborato SO.G.I.N. GR-RS-0131
- [10] ISPRA, Linee guida per il monitoraggio della radioattività, Manuali e linee guida 83/2012
- [11] ó A. Komosa, River Sediment Contamination with Plutonium Isotopes and Heavy Metals in Lublin Agglomeratum (Poland). Polish Journal of Environmental Studies, Vol. 8, N° 3 (1999), 155-160
- [12] ó Direttiva 2013/51/EURATOM del 22/10/2013 che stabilisce requisiti per la tutela della salute della popolazione relativamente alle sostanze radioattive presenti nelle acque destinate al consumo umano
- [13] ó ISPRA Annuario Dati Ambientali, Edizione 2013

9. Allegato

Tabelle (18-31): dati di riferimento a livello nazionale (RESORAD 2010-2012)

Nuclide	N° misure		Minima oncentrazione evabile (MDC)	Intervallo valori rilevati		Regione di campionamento dei valori di min e max
Cs-137	64**	Min	0,102 Bq kg ⁻¹	Min	0,05 Bq kg ⁻¹	CALABRIA
Cs-137	04	Max	0,31 Bq kg ⁻¹	Max	0,50 Bq kg ⁻¹	CALABRIA
Cs-134	6	Min	0,054 Bq kg ⁻¹	Min	*	
Cs-134	U	Max	0,094 Bq kg ⁻¹	Max		
Co-60	6	Min	0,051 Bq kg ⁻¹	Min	*	
C0-00	U	Max	0,10 Bq kg ⁻¹	Max		
K-40	45**	Min	**	Min	69 Bq kg ⁻¹	CALABRIA
X-40	45	Max	. ,	Max	890 Bq kg ⁻¹	CALABRIA

Tabella 18 ó Misure sabbia di mare

^{**} misure integrate con dati relativi ad una indagine straordinaria effettuata dalløSPRA presso le coste della regione Calabria

Nuclide	N° misure		Minima oncentrazione evabile (MDC)	Intervallo valori rilevati		Regione di campionamento dei valori di min e max
Cs-137	116	Min	0,0563 Bq kg ⁻¹	Min	0,136 Bq kg ⁻¹	BASILICATA
C5-137	110	Max	9 Bq kg ⁻¹	Max	34,83 Bq kg ⁻¹	LOMBARDIA
Cs-134	18	Min	0,064 Bq kg ⁻¹	Min	*	
CS-134	10	Max	1,38 Bq kg ⁻¹	Max	·	
Co-60	16	Min	0,056 Bq kg ⁻¹	Min	*	
C0-00	10	Max	0,20 Bq kg ⁻¹	Max	·	
K-40	2	Min	**	Min	57 Bq kg ⁻¹	SICILIA
1X-40	2	Max	•	Max	780 Bq kg ⁻¹	CAMPANIA

Tabella 19 ó Misure sedimenti fluviali (RESORAD 2010-2012)

^{*} misure minori delle MDC e non superiori alla MDC più alta

 $^{^*}$ misure minori della MDC e non superiori alla MDC più alta ** MDC delløordine di qualche decina di Bq $kg^{\text{-}1}$

Nuclide	N° misure	Con	Minima centrazione abile (MDC)	Intervallo valori rilevati		Regione di campionamento dei valori di min e max
Cs-137	36	Min	0,00154 Bq 1 ⁻¹	Min	*	
C5-137	30	Max	0,15 Bq 1 ⁻¹	Max		
Cs-134	9	Min	0,0026Bq l ⁻¹	Min	*	
C5-134	,	Max	0,1 Bq 1 ⁻¹	Max		
Co-60	9	Min	0,00134 Bq 1 ⁻¹	Min	*	
20-00		Max	0,0045 Bq 1 ⁻¹	Max		
K-40	9	Min	8 Bq 1 ⁻¹	Min	0,685 Bq 1 ⁻¹	CAMPANIA
K-4 0	9	Max		Max	29,8 Bq l ⁻¹	CAMPANIA
Alfa totale	32	Min	0,0107 Bq 1 ⁻¹	Min	0,0128 Bq 1 ⁻¹	PIEMONTE
Ana totale	32	Max	9 Bq 1 ⁻¹	Max	0,4 Bq 1 ⁻¹	TOSCANA

Tabella 20 ó *Misure acqua di falda (RESORAD 2010-2012)*

^{*} misure minori della MDC e non superiori alla MDC più alta

Nuclide	N° misure	Minima Concentrazione Rilevabile (MDC)		Intervallo valori rilevati		Regione di campionamento dei valori di min e max
Cs-137	182	Min	0,000143 Bq I ⁻¹	Min	*	
C5 157	102	Max	0,7 Bq l ⁻¹	Max		
Cs-134	74	Min	0,00054 Bq 1 ⁻¹	Min	*	
C5-134	74	Max	0,29 Bq l ⁻¹	Max	,	
Co-60	30	Min	0,000428 Bq 1 ⁻¹	Min	*	
C0-00	30	Max	0,218 Bq l ⁻¹	Max	•	
17.40	21	Min	0,00088 Bq l ⁻¹	Min	0,06 Bq l ⁻¹	BASILICATA
K-40		Max	2,9 Bq l ⁻¹	Max	94 Bq l ⁻¹	CAMPANIA

Tabella 21 ó Misure acqua di fiume (RESORAD 2010-2012)

Nuclide	N° misure		Minima oncentrazione evabile (MDC)	Intervallo valori rilevati		Regione di campionamento dei valori di min e max
Cs-137	53	Min	0,003 Bq l ⁻¹	Min	*	
C3 137	33	Max	0,2 Bq l ⁻¹	Max		
Cs-134	26	Min	0,00184 Bq l ⁻¹	Min	*	
C5-134	20	Max	0,12 Bq l ⁻¹	Max		
Co-60	6	Min	0,000428 Bq 1 ⁻¹	Min	*	
C0-00	U	Max	0,218 Bq I ⁻¹	Max		
K-40	14	Min	**	Min	9 Bq 1 ⁻¹	LAZIO
13-40		Max		Max	262 Bq I ⁻¹	LAZIO

Tabella 22 ó Misure acqua di mare (RESORAD 2010-2012)

^{*} misure minori delle MDC e non superiori alla MDC più alta

^{*} misure minori delle MDC e non superiori alla MDC più alta ** MDC dellørdine di qualche unità di Bq l⁻¹

Nuclide	N° misure	Minima Concentrazione Rilevabile (MDC)			vallo valori rilevati	Regione di campionamento dei valori di min e max
Cs-137	43	Min	0,172 Bq kg ⁻¹	Min	0,22 Bq kg ⁻¹	BASILICATA
C5-137	73	Max	0,175 Bq kg ⁻¹	Max***	595 Bq kg ⁻¹	UMBRIA
Cs-134	6	Min	0,132 Bq kg ⁻¹	Min	*	
C5-134	U	Max	0,204 Bq kg ⁻¹	Max		
Co-60	5	Min	0,0834 Bq kg ⁻¹	Min	*	
C0-00	3	Max	0,175 Bq kg ⁻¹	Max		
K-40	25	Min	**	Min	77 Bq kg ⁻¹	UMBRIA
13-40		Max		Max	685 Bq kg ⁻¹	UMBRIA

Tabella 23 ó Misure terreno (RESORAD 2010-2012)

* misure minori della MDC e non superiori alla MDC più alta ** MDC delløordine di qualche decina di Bq kg **
*** solo 6 valori superiori a 100 Bq kg **

Nuclide	N° misure	Minima Concentrazione Rilevabile (MDC)			rvallo valori rilevati	Regione di campionamento dei valori di min e max
Cs-137	51	Min	0,000363 Bq kg ⁻¹	Min	0,3 Bq kg ⁻¹	VALLE D¢AOSTA
Cs-137	31	Max	6,3 Bq kg ⁻¹	Max	33 Bq kg ⁻¹	PIEMONTE
Cs-134	Cs-134 44	Min	0,000401 Bq kg ⁻¹	Min	*	
C5-134	77	Max	1,23 Bq kg ⁻¹	Max		
Co-60	5	Min	0,4 Bq kg ⁻¹	Min	*	
C0-00	3	Max	0,5 Bq kg ⁻¹	Max		
K-40	5	Min	**	Min	98 Bq kg ⁻¹	UMBRIA
12-40	3	Max	·	Max	527 Bq kg ⁻¹	UMBRIA

Tabella 24 ó *Misure erba (RESORAD 2010-2012)*

 $^{^*}$ misure minori della MDC e non superiori alla MDC più alta ** MDC delløordine di qualche decina di Bq $kg^{\text{-}1}$

Nuclide	N° misure		Minima Concentrazione ilevabile (MDC)	I	ntervallo valori rilevati	Regione di campionamento dei valori di min e max
Cs-137	460	Min	0,00279 Bq m ⁻³	Min	0,00000108 Bq m ⁻³	LOMBARDIA
CS-137	400	Max	0,00000201 Bq m ⁻³	Max	0,000072 Bq m ⁻³	LAZIO
Cs-134	78	Min	0,00000277 Bq m ⁻³	Min	*	
C5 13 1	70	Max	0,00038 Bq m ⁻³	Max		
Co-60	33	Min	0,0000016 Bq m ⁻³	Min	*	
C0-00	33	Max	0,00022 Bq m ⁻³	Max		
K-40	35	Min	0,004 Bq m ⁻³	Min	*	
K-40	33	Max	0,01 Bq m ⁻³	Max		
Alfa	9	Min	0,000012 Bq I ⁻¹	Min	0,000012 Bq m ⁻³	MARCHE
totale	9	Max	0,000012 B q 1	Max	0,00765 Bq m ⁻³	CALABRIA
Beta	100	Min	0,0003 Bq m ⁻³	Min	0,000032 Bq m ⁻³	BASILICATA
totale	100	Max	0,00071 Bq m ⁻³	Max	0,0044 Bq m ⁻³	TRENTINO ALTO ADIGE

Tabella 25 ó *Misure particolato atmosferico (RESORAD 2010-2012)*

Nuclide	N° misure	_	Minima Concentrazione levabile (MDC)	In	tervallo valori rilevati	Regione di campionamento dei valori di min e max
Cs-137	37	Min	0,04 Bq kg ⁻¹	Min	0,68 Bq kg ⁻¹	TRENTINO ALTO ADIGE
C5-137	31	Max	0,4992 Bq kg ⁻¹	Max	1,13 Bq kg ⁻¹	TRENTINO ALTO ADIGE
Cs-134	4	Min	0,1 Bq kg ⁻¹	Min	*	
Cs-13+	+	Max	0,11 Bq kg ⁻¹	Max		
K-40	12	Min	6 Bq kg ⁻¹	Min	45,2 Bq kg ⁻¹	UMBRIA
K-40 12	12	Max	o by kg	Max	131 Bq kg ⁻¹	UMBRIA
Co-60	**					

Tabella 26 ó Misure pesce di fiume (RESORAD 2010-2012)

^{*} misure minori delle MDC e non superiori alla MDC più alta

^{*} misure minori della MDC e non superiori alla MDC più alta ** non presente nella rete nazionale

Nuclide	N° misure	_	Minima Concentrazione Rilevabile (MDC)		tervallo valori rilevati	Regione di campionamento dei valori di min e max
Cs-137	299	Min	0,00043 Bq kg ⁻¹	Min	0,082 Bq kg ⁻¹	FRIULI VENEZIA GIULIA
C3 137	2))	Max	1,18 Bq kg ⁻¹	Max	1,22 Bq kg ⁻¹	FRIULI VENEZIA GIULIA
Cs-134	145	Min	0,000288 Bq kg ⁻¹	Min	*	
C5 154	143	Max	1,25 Bq kg ⁻¹	Max		
Co-60	1	Min	0,093 Bq kg ⁻¹			
C0 00	1	Max	0,075 Б4 кд			
K-40	206	Min	7,3 Bq kg ⁻¹	Min	0,08Bq kg ⁻¹	CAMPANIA
17-40	200	Max	22 Bq kg ⁻¹	Max	452 Bq kg ⁻¹	SICILIA

Tabella 27 ó *Misure pesce di mare (RESORAD 2010-2012)*

Nuclide	N° misure		Minima Concentrazione ilevabile (MDC)	I	ntervallo valori rilevati	Regione di campionamento dei valori di min e max
Cs-137	13	Min	0,03 Bq kg ⁻¹	Min	*	
C5-137	13	Max	0,05 Bq kg ⁻¹	Max		
Cs-134	Cs-134 8	Min	0,04 Bq kg ⁻¹	Min	*	
CS-134	0	Max	0,4 Bq kg ⁻¹	Max		
Co-60	1	Min	0,0849 Bq kg ⁻¹			
C0 00	C0-00 1	Max	0,0047 В4 кд			
K-40	7	Min	19,2 Bq kg ⁻¹	Min	19 Bq kg ⁻¹	CAMPANIA
12.40	,	Max	17,2 bq kg	Max	86 Bq kg ⁻¹	CAMPANIA

Tabella 28 ó Misure melanzane (RESORAD 2010-2012)

^{*} misure minori delle MDC e non superiori alla MDC più alta

^{*} misure minori delle MDC e non superiori alla MDC più alta

Nuclide	N° misure		Minima Concentrazione Rilevabile (MDC)		rvallo valori rilevati	Regione di campionamento dei valori di min e max
Cs-137	117	Min	0,016 Bq kg ⁻¹	Min	*	
OS 157	11,	Max	1,33Bq kg ⁻¹	Max		
Cs-134	47	Min	0,045 Bq kg ⁻¹	Min	*	
C3 134	7/	Max	1,08 Bq kg ⁻¹	Max		
K-40	276	Min	**	Min	35 Bq kg ⁻¹	SARDEGNA
K-40	270	Max		Max	210 Bq kg ⁻¹	LAZIO
Co-60	***					

Tabella 29 ó *Misure pesche (RESORAD 2010-2012)*

* misure minori della MDC e non superiori alla MDC più alta ** MDC dellørdine di qualche unità di Bq kg -*** non presente nelle misure della rete nazionale

Nuclide	N° misure		Minima ncentrazione vabile (MDC)	In	tervallo valori rilevati	Regione di campionamento dei valori di min e max
Cs-137	2	Min	0,11 Bq l ⁻¹	Min	*	
C3 137	2	Max	0,12 Bq l ⁻¹	Max		
Cs-134	2	Min	0,13 Bq 1 ⁻¹	Min	*	
CS-134		Max	0,13 Bq 1 ⁻¹	Max		
K-40	2	Min	**	Min	16 Bq l ⁻¹	LAZIO
K-4 0		Max		Max	23 Bq 1 ⁻¹	LAZIO
Co-60	***					

Tabella 30 ó *Misure latte di bufala (RESORAD 2010-2012)*

^{*} misure minori delle MDC e non superiori alla MDC più alta ** MDC delløordine di qualche unità di Bq l⁻¹ *** non presente nelle misure della rete nazionale

Nuclide	N° misure	Minima Concentrazione Rilevabile (MDC)		In	tervallo valori rilevati	Regione di campionamento dei valori di min e max
Cs-137	0.50	Min	0,0048 Bq I ⁻¹	Min	0,06 Bq l ⁻¹	LOMBARDIA
C5 157	859	Max	1,27 Bq I ⁻¹	Max	7,2 Bq I ⁻¹	TRENTINO ALTO ADIGE
Cs-134	308	Min	0,0078 Bq l ⁻¹	Min	*	
C5-13-	300	Max	1,23 Bq I ⁻¹	Max		
Co-60	52	Min	0,016 Bq I ⁻¹	Min	*	
C0-00	32	Max	0,27 Bq I ⁻¹	Max		
K-40	725	Min	4,49 Bq I ⁻¹	Min	15 Bq I ⁻¹	PIEMONTE
IX-40	123	Max	13,4 Bq I ⁻¹	Max	111 Bq l ⁻¹	PIEMONTE
Sr-90	25	Min	0,00302 Bq I ⁻¹	Min	0,016 Bq l ⁻¹	PIEMONTE
51-70	23	Max	0,013 Bq l ⁻¹	Max	0,7 Bq l ⁻¹	BASILICATA

Tabella 31 ó Misure latte vaccino (RESORAD 2010-2012)

38

^{*} misure minori delle MDC e non superiori alla MDC più alta